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Abstract

Carrier-smoothed-code (CSC) algorithm is an effective pseudorange multipath mitigation technique, which can alleviate the compu-
tational burden and reduce the communication bandwidth needed for the transmission of GPS observations. This paper presents an
improved Hatch filter and addresses the optimal CSC algorithm for dual-frequency GPS data based on the optimal parameter estimation
theory. The smoothed observations have the same information content as that of the raw dual-frequency GPS data from which these are
derived. Consequently, the optimal CSC algorithm is equivalent to the uncombined algorithm. Theoretical analyses show that the data
precision of the optimal CSC algorithm is better than that of Hatch filter and its improved version.
� 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in

China Press. All rights reserved.

Keywords: GPS; Carrier-smoothed-code algorithm; Hatch filter; Time-invariant combinations

1. Introduction

The carrier phase measurements are extremely precise
but biased due to integer ambiguities. Code tracking pro-
vides essentially unambiguous pseudoranges which are
coarse comparing with the carrier phase. Carrier-
smoothed-code (CSC) algorithm, which is an effective
pseudorange multipath mitigation technique, represents
ways to take advantage of both code and carrier measure-
ments [1–6].

CSC algorithm can alleviate the computational burden
and reduce the communication bandwidth needed for the
transmission of GPS observations. Therefore, different
CSC algorithms have been developed for kinematic GPS
applications. Amongst all the existing CSC algorithms,
Hatch filter is the most well known and the simplest

scheme. However, the Hatch filter is not optimal for the
dual-frequency GPS data [4–6].

Based on the optimal parameter estimation theory, the
improved Hatch filter and the optimal CSC algorithm for
the dual-frequency GPS data are addressed in more detail.
The optimal CSC algorithm, which is equivalent to the
uncombined algorithm, can preserve the full information
content of the raw dual-frequency GPS data. Theoretical
development demonstrates that the optimal CSC algorithm
has lower noise than the Hatch filter and its improved version.

2. Hatch filter

The dual-frequency GPS pseudorange and carrier phase
measurements can be expressed in a concise matrix form
[6–8]
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with

A1 ¼ 40:28TEC ð2Þ
where fi, ki, Ni are the frequency, wavelength and ambigu-
ity parameter of Li (i = 1,2), respectively; Cq is the non-dis-
persive delay, including geometric delay, tropospheric
delay, clock biases and any other delay which affect all
the observations identically; TEC (total electron content)
is the integrated electron density along the signal path [8–
10].

By applying the least-squares principle to Eq. (1), we can
obtain
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. These two linear

combinations are constants in time, and so they are re-
ferred to as the time-invariant combinations. Obviously,
the time-invariant combination is ionosphere-free and
geometry-free; moreover, any combination of two time-
invariant combinations is still time-invariant. Therefore,
we can obtain a new time-invariant combination as
follows:

kIF
bN IF ¼ LIF � RIF ð4Þ

with

kIF ¼
c
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; N IF ¼ f1N 1 � f2N 2; LIF ¼ h1L1 þ h2L2;

RIF ¼ h1R1 þ h2R2

where c is the speed of light in a vacuum.
The time averaging algorithm of the above time-invari-

ant combination reads
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where n (P2) is the width of the smoothing window. It fol-
lows immediately that
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This is the famous Hatch filter [1–6].
The Hatch filter formula (6) can be rewritten as
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for R1
IF ¼ R1

IF. Obviously, the low-frequency component of
code measurements is extracted using the time averaging
algorithm, while the time difference technique is employed
to retrieve the high-frequency component of carrier
measurements.

The Hatch filter is the most popular and simplest
scheme. However, the Hatch filter is sub-optimal for the

dual-frequency GPS data [6] in the sense of minimal
variance.

3. Improved hatch filter

The improved Hatch filter should have lower noise than
that of the Hatch filter. Moreover, it is an unbiased esti-
mate of the satellite-receiver range of current epoch. There-
fore, a class of carrier smoothing strategies can be
constructed as follows:

Rn
IFðhÞ ¼ ð1� hÞRn

IF þ hðLn
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IFÞ ð8Þ
where h is an arbitrary real value.

For simplicity, we assume that the same type of mea-
surements have the same precision. Thus, the variance of
the output in the filter (8) is
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where c is the phase-code variance ratio, and r2
RIF

is the var-
iance of the combining measurement RIF. It is easy to ver-
ify that, if and only if h* = (1 + c)�1, the corresponding
filter
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has minimal variance.
The expressions
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and
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state that the improved version overperforms the Hatch fil-
ter. The precision gain indicator covðRn

IFÞ=cov½Rn
IFðh

�Þ� can
be used to evaluate the performance of the improved filter
(Fig. 1).

Fig. 1. The precision gain of the improved Hatch filter.
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However, the improved filter is slightly superior to the
popular Hatch filter. In fact, the limitation of the precision
gain of the improved Hatch filter reads

limn!1
covðRn

IFÞ
cov½Rn

IFðh
�Þ�
¼ 1þ c: ð13Þ

4. Optimal CSC algorithm for dual-frequency GPS data

In Hatch filter and its improved version, only the code–
code, carrier–carrier ionosphere-free combinations are
used, namely, some useful information is lost. Conse-
quently, both of them are not globally optimal.

For dual-frequency GPS data, the previous studies [11]
have shown that Rn

IF is the best linear unbiased estimate
of the non-dispersive delay of current epoch. Therefore,
the global optimal filter can be constructed as
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where h1 and h2 are two arbitrary real values.
Substituting the recursive formulation
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into Eq. (14), we can obtain
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Denote

y1 ¼ �ðh1 � h2Þh1 � 2h1h2; y2 ¼ �2h2h1 þ ðh1 � h2Þh2:

Eq. (14) can be rewritten as
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When time-correlation [12,13] is absent, we have
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from which we get the following condition equations
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Thus, we have
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Amongst all the linear combinations for the dual-frequency
GPS data, Rn

IFðh
�
1; h

�
2Þ has minimal variance, thus preserving

the full information content [6]. Consequently, the best lin-
ear combination is equivalent to the uncombined dual-fre-
quency GPS data.
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we can obtain
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The precision gain of optimal CSC algorithm is determined
by the width of the smoothing window and the phase-code
variance ratio (Fig. 2).

Systematic errors can be handled by the compensation
of functional model or the refinement of stochastic model
[7,14–16]. When the ambiguity parameters are taken as
constant systematic errors, in the limitation form, the same
results can be obtained through refinement of stochastic
model [6].

5. Conclusion

(1) Hatch filter is the simplest scheme. The optimal CSC
algorithm can provide more precise positioning
results; however, the phase-code variance ratio
should be determined properly.

(2) When cycle slips occur, the filter has to be restarted.
Cycle slips can be detected using the integrated
Doppler, which is more reasonable and effective than
the differential phase [2,8].

Fig. 2. The precision gain of the optimal filter.
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(3) According to Eqs. (11), (12), and (19), all the
smoothed measurements can be strictly weighted.
Thus, the ‘‘abrupt sting” phenomenon can be elimi-
nated [17].
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